Thursday, December 13, 2018

'Implications of Information Technology in Developing Countries Essay\r'

'The survival and using of organisations in an increasingly turbulent environment would take c atomic number 18 upon effective role of discipline engineering for line up the administrational structure with environmental preferences and for creating symbiotic interorganizational structures. How gutter IT help the organizations in responding to the ch whollyenges of an increasingly labyrinthine and suspicious environment? How hind end IT help the organizations achieve the waxy organization structure? These ar the topics that re master(prenominal)s to be a matter of question for m whatever underdeveloped countries. Although teaching engine room is still a .black lash . engine room for ontogeny countries, it is generally applied in industrialised countries to the disadvantage of the majority of developing countries. This root word give try to illuminate the aspects and the impact of data engineering science in managing organizational change and its implication s for developing countries.\r\n1. Introduction The rate and magnitude of change argon speedyly outpacing the complex of theories. economic, social, and philosophical on which familiar and private decisions ar based. To the extent that we continue to glance the world from the perspective of an earlier, vanishing age, we ordain continue to see the ontogenys surrounding the transition to an breeding society, be unavailing to realize the full economic and social potentiality of this r developmentary engineering science, and risk making more(prenominal) or less real serious mistakes as reality and the theories we custom to reckon it continue to diverge..-Arthur Cordell(1987).\r\nWe have modified our environment so radically that we must modify ourselves in enjoin to exist in this parvenuefound environment..Norbert Wiener(1957) The survival and result of organizations in an increasingly turbulent environment would work out upon effective utilization of culture engine room for reorient the organizational structure with environmental preferences and for creating symbiotic interorganizational structures. How lowlife IT help the organizations in responding to the challenges of an increasingly complex and equivocal environment? How can IT help the organizations achieve the . plastic. organization structure? These atomic number 18 the topics that remains to be a matter of question for many developing countries. This study volition try to illuminate the aspects and the impact of Information engineering in managing organizational change and its implications for developing countries.\r\n2. Aspects of Information Technology Information technology (IT) may be defined as the convergence of electronics, computing, and telecommunications. It has unleashed a tidal wave of scientific innovation in the necessitateing, storing, processing, transmission, and presentation of entropy that has not only transform the randomness technology sector itself into a senior highly dynamic and expanding field of military action †creating modern food markets and generating tonic enthronization, income, and jobs- unless also provided separate sectors with more rapid and efficient mechanisms for responding to stimulates in demand patterns and changes in global comparative advantages, through more efficient cognitive operation processes and new and alter produces and function (e.g. replacing mechanically skillful and electromechanical components, upgrading traditionalistic yields by creating new product functions, incorporating skills and functions into equipment, automating routine work, making skillful, professional, or financial assists more transportable).\r\nThe development of IT is intimately associated with the overwhelming advances lately accomplished in microelectronics. Based on scientific and proficient breakthroughs in transistors, semiconductors, and integrated circuits (â€Å"chips”), micro-electronic s is affecting twain other branch of the economy, in terms of both its present and prospective employment and skill requirements and its future market prospects. Its introduction has resulted in a drastic fall in woo as come up as dramatically improved practiced performance both within the electronics pains and outside it (Malone and Rockart, 1993). The continuous rise in the number of features on a single micro-electronic chip has permitted lower convocation be for electronic equipment (each chip replacing many distinguishable components), faster switching speeds ( then faster and more right computers), and more reliable, little, and lighter equipment (fewer interconnections, less power and material).\r\n resembling dramatic falls in cost occurred in the transport and steel industries in the nineteenth ampere-second and in energy in the twentieth, associated with the emergence of the tertiary and fourth Kondratiev rungs, respectively. The potential effectuate of mi croelectronics atomic number 18 thus very far-reaching, for its recitation in yield saves on just slightly all inputs, ranging from skilled and unskilled advertize to energy, materials, andcapital. All sectors of the economy have been influenced by the development of IT applications: reading technology opens up greater opportunities for the exploitation of economies of scale and scope, allows the more flexible return and theatrical role of weary and equipment, promotes the internationalization of production and markets, asseverates greater mobility and tractableness in capital and financial flows and services, and is frequently the set for the creation of innovative financial instruments.\r\nInformation musical arrangement developments be constantly world applied to adjoin the productiveness, reference, and efficiency of finance, banking, business focus, and public administration. In manu positionuring, and to almost extent in agriculture, many processes have been automated, some requiring highly flexible, self-regulating weapons, or robots. The engineering industry has been transformed by computer-aided fig and three-dimensional computerized prove displays. The pace of technological change in IT depart most likely accelerate the already plain growth in the interdependence of international dealings not righteous economic or financial, but also political and cultural. National economies have wrick more susceptible to the effects of policy decisions interpreted at the international train, and domestic help economic measures ar having increased impacts on economic policies of other countries.\r\n homo markets for the consumption of similar goods be growing, and so are common lifestyles across national borders. The advance of telecommunications and cybernation has recently enabled elephantine companies to use information systems to delight technical and economic information among numerous computer systems at different geographical locations, subjecting widely scatter industrial plants to direct managerial control from a central location; this affects the international division of perseverance and production and international trade, changing the patterns of industrial self-will and control, altering the competitive standing of individual countries, and creating new trading fortuneners. It is the desegregation of functions that confers on information technology its real economic and social significance.\r\nMore than just a gradual and incremental technological evolution leading to improved bureaus of carrying out traditional manufacturing processes (i.e. simply the substitution of new technologies for existing systems and the systematization of standard activities), IT take awayers the opportunity for exonerately new ways of working through systems integration. Rather than applying one breaker point of new technology to each of the production functions instanter performed at distinct stages of the production process, i.e. design, production, marketing, and distribution (in what could be called â€Å"stand-alone” improvements or â€Å"island mechanization”), having evolved in to new technologies, i.e. Enterprise Resource mean systems, IT offers the possibility of linking design to production (e.g. through programmable manufacturing, measuring, and scrutiny equipment responding to the codification of design), cooking and design to marketing and distribution (e.g. through a variety of computer aids and databases that sense and collect changing market trends), production to distribution (e.g. by automatically incorporating orders and commissions by customers and suppliers into the production process), etc.\r\nThe complete integration of all these production subsystems in a synergistic ensemble is still more a long-term trend than a reality, but use of automated equipment to link together individual items of equipment be to hitherto discrete manufacturing operat ions has already do IT a strategical eff for industry. More technical advances are expected soon in the mechanization of telecommunications and the linkage of computers by data transmission that will enhance the possibilities of systems integration. Such â€Å"programmable automation,” or computer-integrated manufacturing (CIM), has the capability of integrate information processing with physical tasks performed by programmable machine tools or robots. CIM offers radical improvements in traditional worry areas confronting manufacturers, such as: †reduced lead condemnation for existing and new products;\r\n†reduced inventories; †more blameless control over production and better quality production management information; †increased utilization of valuable equipment; †reduced overhead costs; †improved and consistent quality; †more accurate promise; †improved delivery performance (Miles et al., 1988). These features characterize information technology as a new technological system, in which far-reaching changes in the trajectories of electronic, computer, and telecommunication technologies converge and offer a range of new technological options to virtually all branches of the economy.\r\nMoreover, IT forms the basis for a reorganization of industrial society and the core of the emerging techno-economic paradigm. The reason for the pre-eminence of the new technological system clustered around information technology over the equally new technological systems clustered around new materials and biotechnology is the fact that information activities of one kind or some other are a part of every activity within an industrial or commercial sector, as well as in our working and domestic lives. Almost all productive activities have high information intensity (some involve little else, such as banking or upbringing).\r\nFurther more, along with the prime minister of mesh technology and e-business architectures; p owerful concepts like chronicle control, supply chain management, customer relationship/service management, and management resource planning through the internet under the name of Enterprise Resource Planning have enabled IT to be capable of offering â€Å"strategic” improvements in the productivity and competitiveness of virtually any socio-economic activity. Other than industrial or commercial sectors, information technology is also applicable in education sector and in public institutions. Thus, Information Technology is universally applicable. Probably only a member of the benefits derived from information technology-based innovations have so far been reaped and the simplicity remain to be acquired in the next decades. The shift towards systems integration to capitalize the full potential benefits of IT requires respectable adaptations, learning processes, and structural changes in existing socioeconomic institutions and organizational systems.\r\nThe tradition in mos t circulating(prenominal) organizations is still to operate in a largely â€Å"disintegrated” fashion, reminiscent of the Ford-Taylorist management approaches that dominated the fourth Kondratiev cycle: high division of working class, increasing functional specialness/differentiation and de-skilling of many tasks, rigid manufacturing procedures and controls, long management hierarchies with bureaucratic decision-making procedures and a â€Å"mechanistic” approach to performance. beneath these conditions, use of IT is restricted to piecemeal technology improvements. By contrast, information technology-based systems offer organizations the opportunity of functional integration, multi-skilled staff, rapid and flexible decision-making structures with greater delegation of responsibilities and greater indecorum of operating units, a more flexible and â€Å" organic fertiliser” approach enabling a quick limiting to changing environmental conditions. (Piore and Sa bel, 1984.)\r\nBut this means that information management skills require the ability to make choices about the optimal arrangements for particular situations: unlike earlier generations of technology, IT offers not a single â€Å"best” way of organization but a set of more or less appropriate alternative organizing, staffing, and managing options that may be adopted in different organizational contexts. there is no â€Å"determinism” in the way information technology influences the socioinstitutional framework. Therefore, organizational innovation is a crucial part of the requirement for firms to adapt to survive (Miles, 1988). Unfortunately, this is true for all the institutions as well. Further, it is even more dramatic for the organizations in developing countries because of not being able to right adapt to this so-called .black-box. technology. No matter how frustrating it is interpreted for these countries, IT still has significant impact on their development.\ r\nAlthough socio-economic structure of these countries resists organizational or institutional changes, the complex interrelations between these changes and information technologies have significant implications for the way IT does and will affect the societies and economies of developing countries. As a matter of fact, the negative and positive potential impacts of IT on these countries are a matter of great parameter among economists and politicians. The main short term issues usually discussed are the potential erosion of the comparative advantages of low labor costs, particularly in relation to assembly facilities, and the effects of automation, particularly on internal markets and international competitiveness. Implications of information technology for those countries hold great importance.\r\n3. Implications for Developing Countries The head start direct effect of the â€Å"micro-electronics revolution” was the location of production for export in third world countr ies. date production of mainframe computers continued to be regain largely in industrialize countries, production of smaller computers and of microelectronic devices, more subject to price competition, was shifted to low-wage locations, chiefly in East Asia, where countries presented low wage costs as well as political stability, a docile labor compress, and government incentives. Location of production for local and divisional consumption take uped, but the countries come to were mainly middle income: three quarters of US investment in third world micro-electronic industries was laborious in 11 countries, namely the four Asian â€Å"dragons,” India, Thailand, Malaysia, the Philippines, Brazil, Mexico, and Colombia (Steward, 1991).\r\nExport-oriented investments in these countries were associated more with direct foreign investment from larger firms in industrialized countries than with firms producing for the local market; on the other hand, licensing was more asso ciated with smaller firms (Tigre, 1995). The automation of production abates the relative importance of labor-intensive manufacturing and cost of labor, thereby eroding the competitiveness of low labor costs. For instance, automation led to a sharp decrease in the difference between manufacturing costs of electronic devices between the linked States and Hong Kong: in manual processes, manufacturing costs were three times higher in the United States, and the introduction of semi-automatic processes made the difference practically thaw (Sagasti, 1994). Equally, the expansion of automation in Japan has contributed to a reduction of Japanese investments in the Asia/Pacific region involving firms in electronics, assembly parts, and textiles (Sagasti, 1994).\r\nThe trend to increasing systems optimisation and integration is most likely to induce large producers in industrialized countries to bring back a significant share of their production located in developing countries (offshore p roduction). This movement has been called â€Å"comparative advantage reversal.” As integration increases, with functions previously obtained by assembling pieces being incorporated in the electronic components, value-added is pushed out of assembly processes into the components themselves and upwards towards servicing. In addition, the growing technological complexness of electronic devices increases the value of the parts manufactured by firms located in industrialized countries The amount of value-added obtained in offshore assembly has thus been constantly fall (Sagasti,1994).\r\nGlobal factories constructed in locations of least cost, often at a considerable distance from final markets, were economically worthwhile because labor was one of the major determinants of costs. Technology and rapid responsiveness to volatile local markets are becoming more important components of competitiveness. The reduction of product cycles due to the growing resistance to obsolescence of programmable machines and equipment has led to a concentration of manufacturing investment in capital-intensive flexible manufacturing, nurture adding to the erosion of the comparative advantages of developing countries. The assembly of systems will probably continue in some developing countries that have adopted protective legislation for local production targeted at particular market segments (e.g. Brazil), although this is changing very rapidly (Steward, 1991).\r\nThe types of equipment produced under these circumstances are used largely in internal markets and are hardly competitive on the international level; they tend to be far more dear(predicate) than comparable equipment available abroad, and often their installation and use are also more costly because of expensive auxiliary installations, under-use, and lack of management skills. Nevertheless, they may at least provide the country with the capacity to follow the development of information technologies more closely. In other countries, assembly of equipment is taking place from components bought practically off the shelf, but as the level of hardware integration and the amount of software system incorporated into the chips (firmware) grow, valueadded will be taken away from the assembly process, reducing or eliminating its economic advantages.\r\nThe introduction of microelectronics requires certain new skills of design, maintenance, and management, as well as complementary infrastructural facilities such as reliable telephone systems and power supplies. Deficiencies in these factors disallow the widespread adoption of information technology in developing countries (Munasinghe et al., 1985). The more advanced developing countries, with a wider basis of skills and infrastructure and a more flexible labor force, may be in a better position to adopt IT and to increase their productivity and their international competitiveness. But the less developed countries, with unsatisfactory skills and infras tructure, low labor productivity, and lack of capital resources, will find it difficult to adopt the new technologies; they are likely to suffer a deterioration in international competitiveness vis-à-vis both industrialized and the more advanced developing countries (Stewart et al., 1991).\r\nQuality, too, requires an adequate level of skills, infrastructure, and managerial know-how that is generally lacking in developing countries. This greatly reduces the synergies, number of options, faster responses, and more informed decisions that can be implemented in the firm by the optimization of the systems performance. In turn, the composition of the labor force existing within firms located in industrialized countries will promote improve their systems performance and further reinforce the advantages derived from automation. The proportion of the labor force industrious in production is constantly decreasing in the industrialized countries, implying that performances at the systems level and innovation, not manufacturing, are becoming the key to profit, growth, and survival (Sagasti, 1994).\r\nLike biotechnology, information technology is a proprietary technology, vital technical information regarding design engineering specification, process know-how, testing procedures, etc., being covered by patents or copyrights or closely held as trade secrets within various electronic firms from industrialized countries. Many companies in the software area do not patent or copyright their products because it entails disclosing valuable information, and firms are generally disinclined to license the more recent and advanced technologies. Therefore, technology transfer takes place mainly among established or important producers, hindering the access to developing countries. Moreover, the main issue facing developing countries is not so much the access to a particular technology but to the process of technological change, because of the dynamism of this process. Sagasti i mplies this issue in the book The Uncertain Guest: science, technology and development (1994) that recent trends in inter-firm relationships seem to evidence that this access takes place essentially through the exponentiation in the equity of the company holding the technology.\r\n'